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ABSTRACT

RaveForce is a programming framework designed for a
computational music generation method that involves au-
dio sample level evaluation in symbolic music representa-
tion generation. It comprises a Python module and a Super-
Collider quark. When connected with deep learning frame-
works in Python, RaveForce can send the symbolic music
representation generated by the neural network as Open
Sound Control messages to the SuperCollider for non-real-
time synthesis. SuperCollider can convert the symbolic
representation into an audio file which will be sent back
to the Python as the input of the neural network. With this
iterative training, the neural network can be improved with
deep reinforcement learning algorithms, taking the quan-
titative evaluation of the audio file as the reward. In this
paper, we find that the proposed method can be used to
search new synthesis parameters for a specific timbre of an
electronic music note or loop.

1. INTRODUCTION

In a computational music generation task, what is essen-
tially generated? This question leads to a debate on ei-
ther to generate music in symbolic music representation,
e.g. MIDI (Music Instrument Digital Interface) or to gen-
erate the audio waveform directly. Symbolic music repre-
sentations can generally reflect the idiosyncrasy of a mu-
sic piece, but they can hardly trace detailed music infor-
mation, such as micro-tonal tunings, timbre nuances and
micro-timing. Signal-based music representations are bet-
ter at preserving micro-level details that are not captured
well by the symbolic representations. Thus signal-based
workflows—including raw audio generation—may be a so-
lution for computational music generation. However, since
raw audio generation requires much more computational
resources than symbolic representation methods, there are
still some difficulties for this method to generate long multi-
track music pieces [1]. Furthermore, without a symbolic
representation, these methods can be too sophisticated to
explain from a music-theoretical perspective. Hence, our
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motivation is to find a balance between these two forms of
music representation in computational music generation.

Our research question is: how can an A.I system be trained
to consider the music sound while generating symbolic
music representation? Technically speaking, we hope that
the neural network in an A.I system can not only generate
symbolic sequences but also convert the symbolic repre-
sentation into an audio waveform that can be evaluated.
To do so, we need to use non-real-time synthesis for the
transformation from symbolic music representation to an
audio file which will become the input of the neural net-
work, and the output will be accordingly the next symbolic
representation. Compared with pure symbolic generation,
this method also outputs the corresponding audio wave-
form, which may broaden the application fields. Besides,
different from raw audio generation, we fix the transform-
ing function for the neural network, which may make the
computational resource focus more on the target music in-
formation than on the function estimation.

In this paper, we will explain the proposed method and
provide a programming implementation as well as two sim-
plified music tasks as examples. We start with the back-
ground of deep learning music generation in Section 2,
demonstrating the relationship between the data type and
the neural network architecture. In Section 3, we present
our method to improve the symbolic representation and the
reason why we choose to use deep reinforcement learn-
ing. Section 4 introduces the implementation details of our
deep reinforcement learning environment with an empha-
sis on how we optimise it for a musical context. Section
5 describes the reward function design in customised tasks
and explains the evaluation from running time and music
quality perspective. In Section 6, we summarise the inno-
vations and limitations of our method as well as our future
directions.

2. BACKGROUND

Computational music generation has for a long time been
an intriguing topic for musicologists and computer scien-
tists [2]. Of current algorithmic methods, deep learning
seems to be particularly relevant for music generation tasks
[3]. Deep learning is a method that learns from data repre-
sentations, so in terms of music generation, it is essential
to study the background of how the music representation
influences the learning process and result.
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2.1 Symbolic vs signal-based representations

Music can typically be represented as either signals (audio)
or symbols (score representations). Popular symbolic rep-
resentation methods include MIDI, musicXML, MEI, and
others [4]. Among them, MIDI is one of the most popular
data formats being used in deep learning music generation
tasks. In some particular styles of music, and particularly
the ones based on traditional music notation, MIDI data
can be an efficient representation. One example is the pi-
ano score generation in the DeepBach project [5]. Another
example is that of machine-assisted composition applica-
tions, in which MIDI allows for editable features [6]. How-
ever, as mentioned in the introduction, there are also many
cases in which symbolic representations are inadequate in
capturing the richness and nuances of the music in ques-
tion.

One way to address limitations of symbolic representa-
tions is the use of sample-level music generation, as demon-
strated in WaveNet [7] and WaveRNN [8]. However, al-
though some progress has been made, the raw audio gen-
eration requires a lot of computational resources, and it is
too complicated to explain how these samples get organ-
ised from a musicology perspective.

The data format can also influence the design of the neu-
ral network. In symbolic representations, supervised learn-
ing can be found in many applications [9]. For raw audio
signals, unsupervised learning techniques such as autoen-
coder and generative adversarial network (GAN) are fre-
quently adopted [10, 11].

2.2 Reinforcement learning

Reinforcement learning is different from supervised or un-
supervised learning techniques in that its updating strategy
relies on the interaction between an agent and the environ-
ment rather than the function gradient. In a given period—
that is, an episode in reinforcement learning—the agent
will try to maximise the reward it can get. The reward
is calculated in each episode, and it is used to update the
parameters of the agents [12].

The connection between reinforcement learning and mu-
sic generation goes back to the use of Markov models in
algorithmic composition. As one of the pioneers in auto-
mated music generation, in the piece called Analogique A,
Tannis Xenakis uses Markov models for the order of musi-
cal sections [13]. The use of Markov models in composi-
tion reveals its connection with reinforcement learning as
the action of the agent only depends on the current state.
However, in previous research on reinforcement learning
in computational music generation [14], the reward func-
tion calculation is not based on the sample-level evalua-
tion.

Recently, deep learning technology has brought new pos-
sibilities to reinforcement learning as it allows the agents to
examine higher-level information. In deep reinforcement
learning, the agent can be represented by a neural network,
which makes it capable of evaluating the raw audio signal
and then output the decision. Deep reinforcement learning
has been a success during the past few years since it shows
that a virtual agent can surpass human beings in several

tasks, e.g. Atari games [15]. After that, there appear more
and more algorithms such as Proximal Policy Optimiza-
tion (PPO) [16]. For testing these algorithms, there are
many simulation environments, e.g. the OpenAl Gym!.
For music, deep reinforcement learning has been used for
the score following [17]. However, there is still no envi-
ronment designed for music generation.

3. DESIGN CONSIDERATION

Though symbolic representations have shown some limi-
tations, generating music at the audio sample level can be
computationally expensive. Therefore, we propose to gen-
erate the symbolic representation first, and then use these
representations to synthesise audio for evaluation.

3.1 From symbolic notation to audio

Our first step is to choose a proper method to convert a
symbolic representation to an audio file. Three options are
considered:

1. to send the generated sequence to an instrument and
record the sound for evaluation.

2. to use other general-purpose programming languages
such as C++ for the sound synthesis.

3. touse music programming languages like Max/MSP,
Pure Data, Csound and SuperCollider for non-real-
time synthesis.

We exclude the first option because it would be too time-
consuming, considering there would be a considerable num-
ber of iterations in the deep learning training process. The
second option is the most efficient in synthesis speed, but
it lacks the extensibility from a music perspective as users
have to be familiar with the C-style programming languages.
The third option best balances the efficiency and usability
as music programming languages have already been ubig-
uitous in the electronic music field [18].

However, both the second and the third option are faced
with the same challenge—the gradient. In supervised learn-
ing, we need to know all the functions and their gradient.
After comparing the output of the neural network and the
training data, we should fine-tune the parameter of the neu-
ral network to minimise the loss with the help of these gra-
dients [19]. In our proposed method, since we involve the
non-real-time synthesis, back-propagation cannot be done
in this context as the functions used for transforming sym-
bolic representation to audio files are unknown.

3.2 Addressing the gradient problem with deep
reinforcement learning

Deep reinforcement learning can solve the gradient prob-
lem mentioned above as it relies only on the interaction
reward rather than the gradient. Though we cannot get the
gradient from the symbolic-to-audio transforming function,
We can quantitatively evaluate the synthesised audio to get
a reward. Concretely, we train a neural network to output
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a sequence of symbolic music notations (such as the pa-
rameters for a synthesiser) and send the information to an
audio programming language for non-real-time synthesis.
Then, we compare the synthesised audio file with the tar-
get file, or we can use a neural network to grade the audio
file directly. When an action brings a positive reward, the
probability of the action should increase, and vice versa.

There are several important concepts in deep reinforce-
ment learning that need to be defined in the music context
(see Fig. 1):

1 Step refers to the process of executing what has been
decided to do in the next 16 ** note or rest.

2 Episode refers to a series of continuous interactions be-
fore the done attribute turns to frue, e.g. the end of a
game. In a musical context, we use a tofal-step attribute
to decide the length of an episode. Thus, it can vary
from one single note to a note sequence.

3 Observation-space refers to the current state. In our mu-
sical context, we set the currently synthesised audio file
to be the observation-space. In other words, the agent
should be “aware” of the previous state (synthesised au-
dio) and take the next step accordingly.

4 Action-space refers to the set of action choices for the
agent. In a musical context, the action-space can be dis-
crete (e.g. a note pitch) or continuous (e.g. the ampli-
tude).

Agent (a neural
network)

Observe and choose next step actioanEvaluate and update agent parameters

Environment (a step sequencer)

Figure 1. RaveForce architecure: in each note (step), the
agent (neural network) will choose an action according to
its observation on the current state (currently synthesised
audio).

4. IMPLEMENTATION AND OPTIMISATION

As is discussed above, the key to our proposed method is
to have an environment that can handle the non-real-time
synthesis and evaluate the result. In our implementation of
RaveForce 2, we follow the OpenAl Gym interfaces in our
Python module, and in SuperCollider, we create a quark
to execute the non-real-time audio synthesis. In order to
connect with deep learning frameworks, some optimisation
is necessary for the observation space.

4.1 The idea from a live coding session

To implement the environment, we refer to a live coding
session [20]. In many live coding sessions, SuperCollider 3

2https://github.com/chacsprint/RaveForce
3https://supercollider.github.io

has been used as the audio engine as it tracks the time
and beat accurately [21]. SuperCollider employs a client-
server architecture that contains two parts: the scsynth (Su-
perCollider Synthesiser) and the sclang (SuperCollider Lan-
guage). The sclang will be combined in real-time to a sim-
plified version of Open Sound Control (OSC) messages
[22] and sent to the scsynth to control the sound. This
architecture allows the scsynth server to run alone, while
sclang can be replaced by other domain-specific languages
(DSLs) like TidalCycles*. In short, in a live coding ses-
sion, the live coders use DSLs as a client to control the real-
time sound synthesis in the SuperCollider server. For our
need, instead of using SuperCollider to output real-time
audio signals, we use it for non-real-time audio synthesis.
As for the client, we choose to write it in Python be-
cause several deep learning frameworks (such as PyTorch
3 ) have been implemented in Python, and the Python mod-
ule Gym is one of the most important benchmarks for deep
reinforcement learning. By designing the client part in
Python, we can follow the Gym interface and connect with
a deep learning framework, while we move the interaction
part (the audio synthesis) to the SuperCollider server. With
the help of Open Sound Control messages, we link the neu-
ral network training with the audio synthesis (see Fig. 2).

Neural Network Notes and SuperCollider Audio File
in Python parameters Pattern

Figure 2. Python-SuperCollider communication: a neural
network (agent) is trained in Python; it sends symbolic mu-
sic representations(e.g. notes and synthesiser parameters)
as Open Sound Control messages to the SuperCollider pat-
tern; then the pattern will be synthesised to an audio file in
non-real-time and sent back to Python as the input of the
neural network, forming an iteration.

4.2 Code implementation

The pseudo-code of the implementation is as follows:

1 Use make function in the client to create the required
environment, which will send a message to the server,
asking the server to load related music patterns, synthe-
sise an empty file and return the address of the file to
the client side. On receiving the returning message, the
client should read the action space and the observation
space.

2 Send the reset message to the server side. Empty the
observation space if it is not.

3 According to the observation space, decide what action
to take. Send the sfep message to the server side with
chosen actions in each step. The server will do non-
real-time synthesis in each step according to the given

4https://tidalcycles.org
Shttps://pytorch.org
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Figure 3. The observation space in each state has the same
length. For instance, the step 1 only has the audio infor-
mation for the first 16th note, but it is padded to have the
same length as the reset state (about 90000 samples).

action message. Also, the server should return the client
with the synthesised file address.

4 The client should use the address to load the currently
synthesised sound file and set it as the observation space.
Calculate the reward by comparing the generated audio
file with the target audio file.

5 Send the reward back to the client for updating the neu-
ral network.

6 Repeat from Step 3 until the limit of episode length is
reached

4.3 Optimisation

In the implementation, a unique strategy is designed for
the observation space. As neural networks typically re-
quire a fixed length input, the observation space needs to
be padded to have the same length in every step. Hence, in
the initialisation stage, we require SuperCollider to gener-
ate an empty full-step (16-step by default) long audio file
corresponding to the beats per minute (BPM) parameter.
The length of this empty file will be set as the total-length
attribute. In the following steps, though the actual output
of the audio file varies in length, it will be padded with
zeros to match the total-length attribute. With this strat-
egy, the observation spaces in each step can share the same
length (see Fig. 3).

5. TASK DESIGN AND EVALUATION

After implementing the environment, it is necessary to ex-
amine what kind of tasks it can handle and evaluate how
the environment performs with the given task.

5.1 Challenges with the reward function design

The reward function in reinforcement learning measures
how well the agent chooses the action in the current step.
Its design is challenging for music generation, especially in
those tasks whose evaluation criteria are subjective. It can

be feasible to evaluate the similarity between the generated
music piece and the songs in a music corpus. At the same
time, pursuing similarity in music can lead to plagiarism,
which is an essential issue to address [23].

Currently, we provide four criteria for evaluation: (1)
mean square error (MSE) of all the samples; (2) MSE of
the Mel-frequency cepstral coefficients (MFCCs); (2) MSE
of the short-time Fourier transform (STFT) coefficients,
both real and imaginary parts; (4) MSE of the constant-
Q transform (CQT) coefficients, both real and imaginary
parts. These four criteria are used to measure the similari-
ties between two audio files. Also, as the whole program-
ming framework is customisable, it can be connected with
other criteria, e.g. a well trained neural network that can
grade a music file.

5.2 The example tasks

, 20, 22000);

5.k (2;

RaveForce. start(pattern, key: \freq, bpm:30, total_step:1);

Post window
FAILURE IN SERVER /n_set Node 1000 not found
nextsCPacket 0.5

ERROR: SynthDef default not found
FAILURE IN SERVER /s_new SynthDef not found

next0SCPacket 0.5
FAILURE IN SERVER /n_set Node 1001 not found
nextsCPacket 0.5

next0SCPacket 0.5

RESULT = @

Figure 4. RaveForce workflow: first run SuperCollider
code, and then open Python IDE (e.g. Jupyter Notebook)
to train the agent.

In RaveForce, the music task should be defined by the
user (see Fig. 4). We provide two music examples to ex-
plain the environment better.

5.2.1 Drum loop imitation

The example task drum-loop uses music samples from three
drum components (kick drum, snare drum, and hi-hat) to
imitate the target drum loop as much as possible. The ac-
tion space in the example is a discrete set that contains all
eight possible combinations in each note from which the
agent should choose one action, and a reward will be cal-
culated according to the choice (see Fig. 5).

Different from some other reinforcement tasks, the re-
ward in this task is precisely the state value function. If we
use Deep Q-learning (DQN) for this task, the Q function in
each step can be calculated as follows:

Q" (als) =V (st41) = V (s) €]

Also, as a specific drum combination only has a fixed
reward, we can use the traditional dynamic programming
method to find the best drum pattern in this case.
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Figure 5. Drum loop combination reward with different
criteria. The green line represents the reward of the opti-
mal drum combination which is closest to the target drum
loop while the rest are random combination rewards. The
MEFCC criterion tends to outperform others in this task.
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Figure 6. Different criteria for kick drum simulation task.
MFCC and CQT tend to show poor performance in this
task.

5.2.2 Kick drum optimal frequency search

In this example, we aim to use a sine wave oscillator, con-
trolled by an amplitude envelope to simulate a kick drum
audio sample. To make it easier for visualisation, we fix
the envelop shape and make the frequency of the sine wave
oscillator the only controllable parameter. The relationship
between the frequency and the reward is shown in Fig. 6.
The fotal-step attribute in SuperCollider can be set to one,
which makes the pattern become a single note. In each it-
eration, the parameter updating of the whole loop is done
for this single note. Also, the example can be extended to
more parameters and more steps.

With the frequency-reward distribution, we can use the
neural network to search for the optimal frequency. First,
we train a critic-network which takes the frequency as in-
put and predicts the reward. When connected with the
critic-network, an actor-network can be trained until it con-
verges to the optimal frequency.

5.3 Evaluation

We will evaluate the environment from two angles: (1)
whether the environment is fast enough for the training;
(2) if the symbolic-to-audio conversion can help the music
generation.

As a support to our method, the programming framework
implementation is the focal point of this paper. In previous
sections, we have introduced our environment design and
the optimisation we have made, which makes it feasible
to use audio evaluation methods for symbolic generation
within an acceptable running time. To illustrate, we pro-
vide the running time of a 16-step task in one episode (see
Fig. 7), which is calculated with the drum-loop task men-
tioned above.

3.0

0 2 4 6 8 10 12 14 16
Step

Figure 7. The running time of RaveForce example task
drum-loop. Step 0 refers to the reset state and some time
will be spent for calculating the total-length. All 16 steps
will take around 3.2 seconds on an Apple MacBook Pro
13-inch (Mid 2017, i5, without Touch Bar).

Regarding the quality of the music, there are still some
uncertainties, for the generated music quality may change
with different algorithms, tasks and music genres. Cur-
rently, limited by computational resources, we focus mainly
on the programming framework implementation, and only
pay particular attention to electronic music loop or note.

Also, it is arguable that the predefinition of synthesiser ar-
chitecture can be a limitation of music complexity. How-
ever, this trade-off is significant to our proposed method.
With a fixed transforming function, for example, the neu-
ral network will no longer need to organise all the audio
samples to form an audio waveform which is aurally sim-
ilar to an FM synthesis tone. Instead, the computational
resources can be used to focus on optimising the param-
eters of a predefined FM synthesiser. This trade-off may
even bring new possibilities in music creation because mis-
matching the target tone with a random synthesiser archi-
tecture can potentially generate a tone which is similar but
slightly different from the target.

6. CONCLUSION

In this project, we propose a new music generation design
that employs deep reinforcement learning, and we have im-



plemented an environment for testing the design. It follows
the OpenAl Gym interfaces but moves the interaction to
SuperCollider. It turns out that the SuperCollider is fast
enough in non-real-time audio synthesis, which makes the
reward calculation and the neural network training feasi-
ble. Meanwhile, there are some uncertainties if this method
can improve the music generation, which should be tested
with different tasks, algorithms and music genres. It can
be one of our future directions. Nevertheless, the whole
implementation produces an environment for researches to
explore new algorithms for music generation tasks, e.g.
music sequence generation or timbre parameter searching.
It provides a new perspective to music generation, espe-
cially for those tasks in which users can find a determined
reward function.
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