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ABSTRACT
In this paper we present some custom designed filters for
real-time motion capture applications. Our target applica-
tion is motion controllers, i.e. systems that interpret hand
motion for musical interaction. In earlier research we found
e↵ective methods to design nearly optimal filters for real-
time applications. However, to be able to design suitable
filters for our target application, it is necessary to estab-
lish the typical frequency content of the motion capture
data we want to filter. This will again allow us to deter-
mine a reasonable cuto↵ frequency for the filters. We have
therefore conducted an experiment in which we recorded the
hand motion of 20 subjects. The frequency spectra of these
data together with a method similar to the residual analy-
sis method were then used to determine reasonable cuto↵
frequencies. Based on this experiment, we propose three
cuto↵ frequencies for di↵erent scenarios and filtering needs:
5, 10 and 15 Hz, which correspond to heavy, medium and
light filtering, respectively. Finally, we propose a range of
real-time filters applicable to motion controllers. In partic-
ular, low-pass filters and low-pass di↵erentiators of degrees
one and two, which in our experience are the most useful
filters for our target application.

1. INTRODUCTION
Motion capture (MoCap) and sensor technologies are of-
ten used for real-time interactive musical applications, e.g.
game controllers like Wii Remote, PlayStation Move, Kinect,
and other controllers like mobile phones and novel inter-
faces for desktop computers. The increased availability of
new and improved MoCap technologies together with algo-
rithms that interpret user motion as control data, make it
increasingly a↵ordable and feasible to use it for musical in-
teraction. We refer to such interfaces as motion controllers
(also known as gesture controllers) [6]. However, many Mo-
Cap and sensor technologies give noisy results, therefore
making it necessary to apply noise removal filters [13, 18].
Low latency is a prerequisite for achieving intimate con-

trol in musical interactive applications [15]. And, as one
might expect, there will always be a corresponding delay
penalty when employing a digital filter. More specifically,
this delay performance is given as the group delay and is
measured in samples, or sampling periods. This further im-
plies that the given time delay of a filter is proportional to
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Figure 1: There is an intrinsic delay penalty when
employing digital filters on MoCap data.

the sampling rate of the MoCap system in use [7]. Since
most MoCap systems have a relatively low sampling rate,
normally between 30 and 200 Hz, this implies that the given
group delay of the filter is critical for the total amount of
delay. The goal of the current paper has been to develop fil-
ters that are optimized for motion controllers and that also
minimize the latency they add to the musical applications
(Figure 1).
In our previous work we found methods to design nearly

optimal digital filters with low group delay [11]. However, to
be able to design application specific filters, it is necessary to
determine the frequency properties of the data to be filtered.
We have therefore conducted an experiment to determine
these properties for musical application based on free-hand
motion in the air.
In the next section we give a brief introduction to digital

filters. Then, in section 3, we present the experiment and
how to determine reasonable frequency properties of human
MoCap data. Based on these results, a range of nearly op-
timal filters for the target application is presented, together
with some evaluations in section 4, before the results are
discussed in section 5.

2. BACKGROUND - DIGITAL FILTERS
Our main goal when applying filters is to smooth data or to
restore signals that have been distorted with noise. There
exist several methods, and they can roughly be divided into
two categories; curve fitting techniques and digital filters.
Curve fitting can intuitively be explained as trying to graph-
ically fit a smooth curve to noisy data. The most common
methods are polynomial fit and spline methods [18]. How-
ever, curve fitting noisy MoCap data is known to be subop-
timal since human motion does not follow polynomial curves
[9]. Digital filters are seen as the most general method for
noise smoothing and is the technique we are going to adapt
in this paper, since we want a causal filter with good real-
time properties. Causal here indicates that the filter output
depends only on past and present inputs, i.e. a mandatory
property for real-time applications.

2.1 The filter objectives
Formally, the goal of a noise filter is to extract the desired
signal from some noisy data. Typically this is done by de-
signing a filter, with the purpose of removing the noise com-
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Figure 2: The frequency domain plot of an IIR low-
pass filter. The filter objectives are highlighted.

ponent while leaving the desired signal unchanged. In other
words, the main two filter objectives are:

• Maximize noise attenuation. That is, reduce the amount
of noise to maximize the signal-to-noise ratio (SNR).

• Minimize the signal distortion. That is, avoid altering
the desired signal.

There exists much theory regarding the two objectives above
[17]. However, in this paper we are especially interested in
the following additional objective:

• Minimize the filter delay. That is, to minimize the
time it takes for the signal to pass the filter.

The most common way to design a digital filter is in the
frequency domain [17]. Here the aim is to determining the
localization of the signal and the noise in the frequency do-
main, and then designing an appropriate filter based on
these properties. The passband refers to the frequencies
that are passed, i.e. wanted, while the stopband refers to
the frequencies we want to filter out. This technique works
particularly well if the signal and the noise can be e↵ec-
tively separated in the frequency domain. However, this is
not necessarily the case for MoCap data. For instance, so-
called white noise is a common property for sensors [16],
and is evenly distributed in the whole frequency band. In
other words, not even an ideal low pass filter can suppress
all the noise since there will also be noise in the passband
[18]. In these cases we need to compromise between noise
attenuation and signal distortion. We return to this chal-
lenge in section 3.
In Figure 2 we have plotted the frequency properties of

a typical low-pass filter, which is the type we are going
to work with since human motion mainly consists of low
frequencies [18]. The figure highlights also the objectives
of filter design. Simultaneously, we want: (1) flat passband,
i.e. low signal distortion, (2) high stopband attenuation, i.e.
high noise suppression, (3) low group delay, i.e. low latency,
and (4) flat group delay, i.e. that all frequency components
of the wanted signal are similarly delayed, also known as
linear phase [7]. Let us now consider the di↵erent digital
filter types.

2.2 Digital filter types (FIR and IIR)
There exist two main digital filter types, finite impulse re-
sponse (FIR) filters and infinite impulse response (IIR) fil-
ters. Moving average is probably the most simple and in-
tuitive realization of a FIR filter [14]. While the moving

average filter have low-pass filter properties, the frequency
domain properties are solely specified by it’s length, i.e. the
order of the filter. In most cases there will exist more op-
timal FIR filter solutions [14], but moving average filters
are frequently used because they are intuitive and simple to
implement.
IIR filters, as the name suggests, have an infinite impulse

response that is the result of their recursive nature. While
a FIR filter only bases its output on the input signal, an
IIR filter bases its output on former output values as well.
In essence, IIR filters o↵er an e↵ective way of achieving
a long impulse response, without having to use long FIR
filters. Therefore, if the goal is to minimize the group delay,
the use of IIR filters seems reasonable, since they can have
dramatically lower order than symmetric FIR filters with
similar performance [7]. Our results in [11] support this
claim as well.
There is one main advantage to so-called symmetric FIR

filters compared to causal IIR filters, being that they have
linear phase which implies a constant group delay [17], i.e.
all frequencies are delayed by the same amount. Symmetric
FIR filters have additionally a fixed group delay of n/2 sam-
ples where n is the given filter order. In other words, their
constant group delay comes at the expense of a fairly high
filter delay compared to IIR filters with similar performance
[11]. Furthermore, it is not certain that an IIR filter with a
moderate amount of group delay error is a big concern for
our target applications.

2.3 Low-pass differentiators (LPD)
Di↵erentiators are a filter type that are commonly used to
extract velocity and acceleration data from position data
[13]. When di↵erentiating MoCap data, it is normal to ex-
perience an increase of noise in the di↵erentiated data. This
is due to the fact that di↵erentiation acts as a high pass fil-
ter. Accordingly, the low frequency motion data in the pass-
band will be attenuated while the white noise in the higher
frequencies will be amplified. As a result, we end up with a
lower SNR value for the di↵erentiated data, which increases
the need for filtering [18, 2]. This is why it is reasonable to
use so-called low-pass di↵erentiators, since they avoid the
undesirable amplification of noise in the higher frequency
band. They also provide better total filter solutions than to
use a low-pass filter in cascade with a di↵erentiator opera-
tor, as we have shown in [10]. Similarly, it is better to use
one low-pass di↵erentiator of degree two, than to use two of
degree one in cascade

2.4 Filter design methods
The design of symmetric FIR filters is a linear problem
and there exist di↵erent general solutions for most FIR de-
sign problems, e.g. the least square method and the Parks-
McClellan method [8, 4]. The design of IIR filters is, on
the other hand, a nonlinear problem, and there are no gen-
eral optimal design methods. There are however di↵erent
construction methods, which can give optimal solutions for
some special cases. The most known classical IIR filter
methods are Butterworth, Chebychev and elliptical (Cauer)
[17]. They are very useful for standard filter types as long as
there is little restriction on the group delay responses [5, 11].
It is therefore necessary to use alternative design methods
if we need more control over the group delay specifications.
In our earlier research we presented a successful method for
designing nearly optimal IIR filters with arbitrary specifi-
cations, including low-pass filters with minimal group de-
lay [11] and IIR low-pass di↵erentiators [10]. In that work
we regarded filter design as a multi-objective optimization
problem, which was solved using an unbiased metaheuristic
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search algorithm. Using this method we are able to custom
design nearly optimal IIR filters with the desired trade-o↵
between group delay and the other filter objectives given
above. For more details about this method see [10] and
[11]. However, before we can design filters for our applica-
tions, we need to determine the typical frequency properties
of the MoCap data we want to filter.

3. FREQUENCY PROPERTIES OF MOTION
As we show below, it is possible to determine reasonable
cuto↵ frequencies from recorded MoCap data. The best
method would be to determine the cuto↵ frequency before
filtering a given set of data. However, this is impossible
for real-time applications since the cuto↵ frequency needs
to be specified beforehand. In practice, we are forced to
use predetermined filters, and therefore need to estimate
generic frequency properties for free-hand motion. Let us
start by presenting our analysis methods before we continue
with presenting the experiment in section 3.2.

3.1 Analysis methods
Before we can begin the discussion on how to estimate a
reasonable generic cuto↵ frequency, we need to make some
assumptions about the noise distribution of the relevant Mo-
Cap technologies. There can be many sources of noise in a
MoCap system: it can be sensor noise, wobbling markers,
electrical interference, quantization noise and more, depen-
dent on the MoCap system used [19]. As already mentioned,
sensors are known to have white noise properties [16, 19].
Some MoCap technologies may have a di↵erent noise dis-
tribution. However, for simplicity, in this paper we assume
that the MoCap system has a white noise distribution. Con-
sequently, our goal is to attenuate as much as possible of the
frequency band that is not part of the signal band. If it is
mandatory not to distort signal, we need to choose a cuto↵
frequency that is just outside the signal band. However, if
we need higher noise suppression than is possible with this
conservative choice, we need to compromise signal distortion
by lowering the cuto↵ frequency inside the signal band [18].
The determination of the optimal cuto↵ frequency will then
be based on the noise attenuation needed and how much we
can lower the cuto↵ frequency inside the signal band with-
out distorting the desired signals too much. To be able to
determine the latter, we used the following two methods.

3.1.1 Power spectral density (PSD) estimation

The most common method to determine the frequency con-
tent of a digital signal is to analyze the frequency spectrum,
which can be derived in di↵erent ways with the Fourier
transform. A non smoothed spectrum estimation with the
Periodogram, a classic non-parametric technique, will nor-
mally be too noisy to clearly show the trend in the data
[3]. We therefore ended up using the Welch’s method with
a Hann window of length 100 (sampling frequency of 100
Hz). This is a much used method which reduces the noise in
the spectral density estimation in exchange for reduced res-
olution in the frequency domain. However, other spectrum
estimators and windows will give similar results [3].

3.1.2 Residual analysis

While the above mentioned method o↵ers a good basis for
making a conservative determination of the passband edge,
it does not necessarily provide us with a good basis to de-
termine a reasonable cuto↵ frequency. For a more hands on
approach, it is possible to visually inspect the MoCap data
when filtered with di↵erent cuto↵ frequencies. We can then
choose the cuto↵ that provides a good balance between noise
reduction and signal distortion. A more systematic version

of this technique is known as residual analysis, which is a
common method used for this task in the field of biome-
chanics [18]. The method consists of low-pass filtering the
data with di↵erent cuto↵ frequencies and calculating the
residual, i.e. what is left over when we subtract the filtered
data from the raw data. As long as the filter is only atten-
uating noise, the residual should be rather small. However,
when the filter starts to attenuate the desired signal, the
residual will become larger. By performing this analysis for
several cuto↵ frequencies, and plotting the resulting residu-
als, we get an overall picture of their impact. This plot can
then serve as the basis for determining a reasonable cuto↵
frequency [18].
When computing the residual plots, care should be taken

to make sure that the applied filters have constant group
delay and are consistent with each other. This will ensure
that the change in residual is not due to di↵erence in the
filter characteristics other than the cuto↵ frequency. It is
common to use the actual intended filters which are sup-
posed to be used in the final application [18]. However, our
goal is not to find the optimal filter for a given set of data,
but to find the main frequency trend of free-hand motion
among several recordings. We ended up using the window
method [7] to design the needed filters with an order of 200.
This symmetric FIR design method has a broad cuto↵ fre-
quency range and gives consistent filter characteristics for
di↵erent cut-o↵ frequencies [1].

3.2 The experiment
3.2.1 Setup and recordings

The experiment consisted of recording the hand motion of
20 subjects, 4 females and 16 males in the age range of
22-47. We used an optical infrared marker based MoCap
system, OptiTrack, to record the subjects’s hand motion
at 100 Hz. The MoCap setup consisted of eight OptiTrack
V100:R2 cameras that were attached to tripods in a room
measuring about 7x8 meters. One 16 mm reflective spher-
ical marker was attached to the subject’s dominant hand,
close to the index finger, see Figure 3. Care was taken to
minimize wobbling of the marker, which can introduce ad-
ditional noise to the MoCap data. For the same reason, we
also spent time calibrating the OptiTrack system. We did
not want to perform post processing of the recorded data,
e.g. for gap filling, which could potentially have distorted
our results. Recordings with invalid or missing data were
therefore omitted. The subject’s hand motion were further
recorded in the following two takes, both 20 seconds long.

• Take 1: The subjects were asked to move their domi-
nant hand as rapid as possible in an arbitrary pattern.
The intention of these recordings was to find an upper
frequency limit for hand motion.

• Take 2 : The subjects were asked to simulate that they
were controlling some application with more articu-
lated and controlled motion. Here we wanted to ex-

Marker placement on hand MoCap system

Free-hand
motion

Figure 3: Placement of the marker (left) and an
illustration of the experiment (right).
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Figure 4: PSD estimation of the recorded data using
Welch’s method. The data is shown as statistical
results of all 20 recordings, with results from both
Take 1 (rapid) and Take 2.

amine the typical frequency content of the motion we
anticipate to see most of in our target application.

We expected the latter to result in the need for a lower cut-
o↵ frequency than the former, which makes it possible to
remove more noise. During all recordings, the subjects were
asked to not clap their hands or make other limb collisions.
We wanted to avoid collisions since they can be problematic
to study, e.g. contain high frequency components that re-
quire higher sampling rates, and added noise problems with
wobbling markers.

3.2.2 Results and interpretations

The results of the experiment are shown in Figures 4 and 5.
As we can see from the spectral density estimates of Take
2, the mean value starts to move away from the noise floor
between 20 and 30 Hz. For Take 1, the mean value starts to
move away between 25 and 35 Hz. Furthermore, the main
frequency content for Take 2 reaches roughly up to about
5–10 Hz, while Take 1 has a wider frequency distribution.
The residual plots in Figure 5 are somewhat easier to in-

terpret since deviation in mm is more comprehensible than
power in dB. When filtering hand motion, which normally
has a displacement in the range of 200–1000 mm, a devia-
tion of 1 mm is normally not significant. We have further
seen a general trend for what the residual values indicates.
When it was below 1 mm, the filters did not severely dis-
tort the MoCap data. But when the value increased above
5 - 10 mm, the filters started to clearly distort some high
frequency parts of the MoCap data.
By using the above indicators and the statistical residual

results in Figure 5, it seems reasonable to set the lower
cuto↵ frequency for Take 2 to about 5 Hz, since the standard
deviation is below 5 mm at this cuto↵ value. A reasonable
upper frequency cuto↵ for Take 1, can further be set to be
between 15 and 20 Hz, since the mean value goes below
1 mm in this region. A sensible trade o↵ between these
two outer cuto↵s is in our opinion 10 Hz, since Take 2 is
below 1 mm and Take 1 is below 5 mm for this cuto↵ value.
Examples of how these cuto↵ frequencies perform can be
seen in Figure 6. Based on this experiment, we propose
the following three frequency cuto↵s for filtering free-hand
motion:
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Figure 5: Statistical results of the residual analysis

of the recorded data. Take 1 (rapid motion) is in
red while take 2 is given in black.

5 Hz Heavy filtering : Fast and rapid motion may be heavily
smoothed out. However, the filtered data will contain
the main features of normal controlled hand motion.

10 Hz Medium filtering : Most features of normal and medium
rapid motion will be kept in the filtered data. How-
ever, some of the higher frequencies will be partially
distorted.

15 Hz Light filtering : All main features of both rapid and
normal motion are kept. Only the most extreme parts
of the data may be partially blurred.

We could have added a cuto↵ frequency at 20 Hz, since the
residual plot shows that the mean value of Take 1 decreases
below 1 mm at about 20 Hz. But we have omitted this cuto↵
since we are not sure if the content that is blurred away
with the 15 Hz cuto↵, is due to noise or actual motion. The
residual di↵erence with the 20 Hz cuto↵, is also minimal.
However, a cuto↵ frequency of 20 Hz can be used if it is
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Figure 6: Excerpts from Take 1 and Take 2. While
a 5 Hz filter cuto↵ works well for the Take 2 below,
the rapid motion needs a 10 Hz or a 15 Hz cuto↵
frequency to follow the details in the recording.
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important to keep all details in the recordings, and noise
suppression is secondary.

3.2.3 Discussion

With this experiment we wanted to determine a generic
trend in frequency content of free-hand motion. However,
it was not straightforward to give instructions to the sub-
jects. We hesitated to give them specific tasks, since this
could lead them to do certain motion which could have influ-
enced our results. We therefore ended up giving them quite
general and open tasks, which resulted in a range of dif-
ferent interpretations and motion. However, as the results
show, there is a quite clear trend among the recordings.
We considered testing expert subjects trained in moving

at high frequencies, e.g. drummers. However, their motion
is normally an e↵ect of collisions and special techniques to
be able to achieve high frequency. These motion were not
part of our scope. Furthermore, inspection of the recorded
data revealed that some contained position jumps that could
not have been due to human motion. The errors clearly
distorted the PSD data and raised the overall noise floor. It
is therefore important to remove these errors if one wants
valid PSD data. However, these errors had minimal impact
on the residual plots, which shows that the residual method
is a somewhat more robust analysis method.

4. PROPOSED IIR FILTERS
In our previous work we have based our sound excitation
on three main types of MoCap data: position, velocity and
acceleration [12]. We found these motion features to be
the most useful for controlling sonic and musical features.
We have therefore chosen to focus on the filter types that
extracts these motion features from raw positional MoCap
data, respectively low-pass filters and low-pass di↵erentia-
tors of degree 1 and 2.

4.1 Proposed IIR vs. symmetric FIR filters
We have already shown in our previous work that our IIR
design method can produce better low delay filters than
currently available methods [10, 11]. As we can see from
Table 1 and Figure 8, the proposed IIR filters are signifi-
cantly better than symmetric FIR filters if low delay and
high noise attenuation are of priority, giving a potential
noise suppression gain between 5-16 dB for the relevant fil-
ter types. The presented IIR filters have a group delay of 2
samples or less. This group delay amount was found to give
a well balanced trade-o↵ between the di↵erent filter objec-
tives. For a more thorough low-delay comparison between
di↵erent filter types, see [11]. The specification of the pro-
posed IIR filters is given on our project web page together
with a MAX/MSP implementation [1], and a subset of these
filters is given in Table 2. (To convert normalized frequency
to hertz, multiply by half the sample frequency.)

4.2 Filter evaluation
We have tested the proposed IIR filters and confirmed their
performance in MAX/MSP. It is not trivial to evaluate the
filters for general NIME use as it depends strongly on the
end application. While some applications may want to min-
imize noise to get the most robust performance, some ap-
plications may benefit artistically from MoCap noise as it
can add a desirable texture to the resulting sound synthesis.
Over-smoothing, i.e. deliberately distorting the signal, can
also be appropriate for some applications. However, it is im-
portant to use a cuto↵ frequency that satisfies the need for
the given task, as the following example shows. By identify-
ing high peaks in the acceleration data, we are able to detect
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Figure 7: The e↵ects of using di↵erent cuto↵ fre-

quencies when extracting acceleration of a hand

clap. The collision is more easily detected if the cut-
o↵ frequency is above 10 Hz (acceleration in m/s2).

sudden motion and limb collisions, which we have used to
trigger sonic and musical features [12]. The e↵ect of using
a too low cuto↵ frequency when extracting the acceleration
data is shown in Figure 7. Not only does it attenuate more
of the white noise, it also attenuates the acceleration peak.
This is an expected e↵ect, since a collision can be seen as
an impulse which has a flat frequency response, i.e. the en-
ergy is spread out in the whole frequency band. The more
of the frequency band that is included when di↵erentiating,
the more the collision power will be seen in the acceleration
data.
Another important issue is what impact a moderate amount

of group delay error can have on our target application. In
our experience, there does not appear to be any dramatic
negative distortion e↵ect if the upper frequency range has
some group delay error, as long as the main content (up to
5–10 Hz) has a fairly constant group delay. The optimized
IIR filters are further superior if high noise attenuation,
combined with low passband distortion and low group delay
are desired. In our findings, it is possible achieve up to one-
third the delay by using optimized IIR filters, as compared
to symmetric FIR filters with similar performance. A delay
of two samples, as opposed to six, yields a delay reduction
of 40 ms for a MoCap system with a sampling frequency of
100 Hz, which should be a favorable reduction for a typical
MoCap setup used for musical interaction [13]. In short, the
optimized IIR filters have much better low delay potential
than symmetric FIR filters for our target application, at the
expense of a more complicated design.
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Table 1: Potential noise attenuation gain in dB of
the proposed IIR filters compared to optimal sym-
metric FIR designs, all of order 4. While the sym-
metric FIR filters have a fixed group delay of 2 sam-
ples, the proposed IIR filters have a group delay of 2
samples or less. For some of the proposed filters we
have tolerated a moderate amount of group delay
error.

normalized cuto↵ 0.1 0.2 0.3 0.4 0.5
low-pass filters 8 8 8 6 5
low-pass di↵. of degree 1 10 10 9 7 6
low-pass di↵. of degree 2 16 15 13 12 10

5. DISCUSSION AND CONCLUSION
In this paper we have addressed the challenge of using dig-
ital filters for real-time applications, focusing on filtering
free-hand motion. To be able to design filters for such mo-
tion data, we conducted an experiment to determine the
generic frequency properties of free-hand motion. Based on
this experiment, we propose 3 di↵erent filter cuto↵s; 5, 10
and 15 Hz. The 5 Hz, and partly the 10 Hz, cuto↵ will at-
tenuate some of the high frequency parts of rapid free-hand
motion. However, this may be necessary to get the needed
noise suppression.
Although the experiment has only considered the fre-

quency content of free-hand motion, our review of previ-
ous frequency studies in biomechanics suggests that most
human motion is reported to be close to our found cuto↵
values, or more specifically between 3-26 Hz [9, 19, 20]. Our
proposed frequency cuto↵s should therefore work for most
parts of the body, with some reasonable generalizations and
adjustments, by regarding the kinematics of the used limb.
Our proposed analysis method can be used if more certain
knowledge is needed [1].
Finally, we propose a set of filters for our target applica-

tions, which has lower delay than what is achievable by es-
tablished filter design methods. The main purpose of these
filters has been to present some IIR filters designed with
low group delay in mind, which is an important feature for
intimate control for musical interactions. Compared to op-
timal symmetric FIR filters, they give a noise attenuation
increase between 5-16 dB with similar delay, or up to 2-3
times the delay reduction for similar magnitude properties.
These filters and some tools are published on our project
page together with a Max/MSP implementation [1]. Since
the optimal filter depends heavily on application specific
details (e.g. sampling frequency, intended use), it is not
possible to present a complete list of filters for all di↵erent
applications and scenarios. However, our proposed set of
filters should demonstrate the potential of using our filter
design approach.
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