Reflecting on some flipped classroom strategies

I was invited to talk about my experiences with flipped classroom methodologies at a seminar at the Faculty of Humanities last week. Preparing for the talk got me to revisit my own journey of working towards flipped teaching methodologies. This has also involved explorations of various types of audio/video recording. I will go through them in chronological order.

Podcasting

Back in 2009-2011, I created “podcasts” of my lectures a couple of semesters, such as in the course MUS2006 Music and Body Movements (which was at the time taught in Norwegian). What I did was primarily to record the audio of the lectures and make them available for the students to listen/download. I experimented with different setups, microphones, etc., and eventually managed to find something that was quite time-efficient.

The problem, however, was that I did not find the cost-benefit ratio to be high enough. This is a course with fairly few students (20-40), and not many actually listened to the lectures. I don’t blame them, though, as listening to 2×45 minutes of lecturing is not the most efficient way of learning.

Lecture recording

I organized the huge NIME conference in 2011, and then decided to explore the new video production facilities available in the auditorium we were using. All of the lectures and performances of the conference were made available on Vimeo shortly after the conference. Some of the videos have actually been played quite a lot, and I have also used them as reference material in other courses.

Making these videos required a (at the time) quite expensive setup, one person that was in charge of the live mixing, and quite a lot of man-hours in uploading everything afterwards. So I quickly realized that this is not something that one can do for regular teaching.

Screencast tutorials

After my “long-lecture” recording trials, I found that what I was myself finding useful, was fairly short video tutorials on particular topics. So when I was developing the course MUS2830 Interaktiv musikk, I also started exploring making short screencast videos with introductory material to the graphical programming environment PD. These videos go through the most basic stuff, things that the students really need to get going, hence it is important that they can access it even if they missed the opening classes.

The production of these were easy, using Camtasia for screencasting (I was still using OSX at the time), a headset to get better audio, and very basic editing before uploading to our learning platform and also sharing openly on YouTube. The videos are short (5-10 minutes) and I still refer students to them.

Besides the video stuff, there are also several other interesting flipped classroom aspects of the course, which are described in the paper An Action-Sound Approach to Teaching Interactive Music.

MOOC

The experimentation with all of the above had wet my appetite for new teaching and learning strategies. So when the UiO called for projects to develop a MOOC – Massive Open Online Course – I easily jumped on. The result became Music Moves, a free online course on the FutureLearn platform.

There are a number of things to say about developing a MOOC, but the short story is that it is much more work than we had anticipated. It would have never worked without a great team, including several of my colleagues, a professional video producer, an external project manager, and many more.

The end result is great, though, and we have literally had thousands of people following the course during the different runs we have had. The main problem is the lack of a business model around MOOCs here in Norway. Since education is free, we cannot earn any money on running a MOOC. Teaching allocations are based on the number of study points generated from courses, but a MOOC does not count as a normal course, hence the department does not get any money, and the teachers involved don’t get any hours allocated to re-run the MOOC.

We have therefore been experimenting with running the MOOC as part of the course MUS2006 Music and Body Movements. That has been both interesting and challenging, since you need to guide your attention both to the on-campus students but also to focus on the online learners’ experience. We are soon to run Music Moves for the fourth time, and this time in connection with the NordicSMC Winter School. Our previous on/off-campus teaching has been happening in parallel. Now we are planning that all winter school attendees will have to complete the online course before the intensive week in Oslo. It will be interesting to see how this works out in practice.

Flipped, joint master’s

Our most extreme flipped classroom experiment to date, is the design of a completely flipped master’s programme: Music, Communication and Technology. This is not only flipped in terms of the way it is taught, but it is also shared between UiO and NTNU, which adds additional complexity to the setup. I will write a lot more about this programme in later blog posts, but to summarize: it has been a hectic first semester, but also great fun. And we are looking forwards to recruiting new students to start in 2019.

Musical Gestures Toolbox for Matlab

Yesterday I presented the Musical Gestures Toolbox for Matlab in the late-breaking demo session at the ISMIR conference in Paris.

The Musical Gestures Toolbox for Matlab (MGT) aims at assisting music researchers with importing, preprocessing, analyzing, and visualizing video, audio, and motion capture data in a coherent manner within Matlab.

Most of the concepts in the toolbox are based on the Musical Gestures Toolbox that I first developed for Max more than a decade ago. A lot of the Matlab coding for the new version was done in the master’s thesis by Bo Zhou.

The new MGT is available on Github, and there is a more or less complete introduction to the main features in the software carpentry workshop Quantitative Video analysis for Qualitative Research.

Testing Blackmagic Web Presenter

Blackmagic Web PresenterWe are rapidly moving towards the start of our new Master’s programme Music, Communication & Technology. This is a unique programme in that it is split between two universities (in Oslo and Trondheim), 500 kilometres apart. We are working on setting up a permanent high-quality, low-latency connection that will be used as the basis for our communication. But in addition to this permanent setup we need solutions for quick and easy communication. We have been (and will be) testing a lot of different software and hardware solutions, and in a series of blog posts I will describe some of the pros and cons of these.

Today I have been testing the Blackmagic Web Presenter. This is a small box with two video inputs (one HDMI and one SDI), and two audio inputs (one XLR and one stereo RCA). The box functions as a very basic video/audio mixer, but the most interesting thing is that it shows up as a normal web camera on the computer (even in Ubuntu, without drivers!). This means that it can be used in most communication platforms, including Skype, Teams, Hangouts, Appear.in, Zoom, etc., and be the centerpiece of slightly more advanced communication.

My main interest in testing it now was to see if I could connect a regular camera (Canon XF105) and a document camera (Lumens DC193) to the device. As you can see in the video below, this worked flawlessly, and I was able to do a quick recording using the built-in video recorder (Cheese) in Ubuntu.

So to the verdict:

Positive:

  • No-frills setup, even on Ubuntu!
  • Very positive that it scales the video correctly. My camera was running 1080i and the document camera 780p, and the scaling worked flawlessly (you need the same inputs for video transition effects to work, though, but not really a problem for my usage).
  • Hardware encoding makes it easy to connect also to fairly moderate PCs.
  • Nice price tag (~$500).

Negative:

  • Most people have HDMI devices, but SDI is rare. We have a lot of SDI stuff, so it works fine for our use.
  • No phantom power for the XLR. This is perhaps the biggest problem, I think. You can use a dynamic microphone, but I would have preferred a condenser. Now I ended up connecting a wireless lavalier microphone, with a line-level XLR connection in the receiver. It is also possible to use a mixer, but the whole point of this box is to have a small, portable and easy set up.
  • 720p output is ok for many things we will use it for, but is not particularly future-proof.
  • It has a fan. It makes a little more noise than when my laptop fan kicks in, but is not noticeable if it is moved one meter away.

Not perfect, but for its usage I think it works very nicely. For meetings and teaching where it is necessary to have a little more than just a plain web camera, I think it does it job nicely.

Trim video file using FFMPEG

This is a note to self, and hopefully to others, about how to easily and quickly trim videos without recompression.

Often I end up with long video recordings that I want to split or trim. One a side note sometimes people call this “cropping”, but in my world cropping is to cut out parts of the image, that is, a spatial transformation. Splitting and trimming are temporal transformations.

You can of course both split and trim in most video editing software, but these will typically also recompress the file on export. This reduces the quality of the video, and it also takes a long time. A much better solution is to trim losslessly, and fortunately there is a way to do this with the wonder-tool FFMPEG. Being a command line utility (available on most platforms) it has a ton of different options, and I never remember these. So here it goes, this is what I use (on Ubuntu) to trim out parts of a long video file:

This will cut out the section from about 1h19min to 2h18min losslessly, and will only take a few seconds to run.

From Basic Music Research to Medical Tool

The Research Council of Norway is evaluating the research being done in the humanities these days, and all institutions were given the task to submit cases of how societal impact. Obviously, basic research is per definition not aiming at societal impact in the short run, and my research definitely falls into category.Still it is interesting to see that some of my basic research is, indeed, on the verge of making a societal impact in the sense that policy makers like to think about. So I submitted the impact case “From Music to Medicine”, based on the system Computer-based Infant Movement Assessment (CIMA).

Musical Gestures Toolbox

CIMA is based on the Musical Gestures Toolbox, which started its life in the early 2000s, and which (in different forms) has been shared publicly since 2005.

My original aim of developing the MGT was to study musicians’ and dancers’ motion in a simple and holistic way.The focus was always on trying to capture as much relevant information as possible from a regular video recording, with a particular eye on the temporal development of human motion.

The MGT was first developed as standalone modules in the graphical programming environment Max, and was in 2006 merged into the Jamoma framework. This is a modular system developed and used by a group of international artists, under the lead of Timothy Place and Trond Lossius. The video analysis tools have since been used in a number of music/dance productions worldwide and are also actively used in arts education.

Studying ADHD

In 2006, I presented this research at the annual celebration of Norwegian research in the Oslo concert hall, after which professor Terje Sagvolden asked to test the video analysis system in his research on ADHD/ADD at Oslo University Hospital. This eventually lead to a collaboration in which the Musical Gestures Toolbox was used to analyse 16 rat caves in his lab. The system was also tested in the large-scale clinical ADHD study at Ullevål University Hospital in 2008 (1000+ participants). This collaboration ended abruptly with Sagvolden’s decease in 2011.

Studying Cerebral Palsy

The unlikely collaboration between researchers in music and medicine was featured in a newspaper article and a TV documentary in 2008, after which physiotherapist Lars Adde from the Department of Laboratory Medicine, Women’s and Children’s Health at the Norwegian University of Science and Technology (NTNU) called me to ask whether the tools could also be used to study infants. This has led to a long and fruitful collaboration and the development of the prototype Computer-based Infant Movement Assessment (CIMA) which is currently being tested in hospitals in Norway, USA, India, China and Turkey. A pre-patent has been filed and the aim is to provide a complete video-based solution for screening infants for the risk of developing cerebral palsy (CP).

It is documented that up to 18% of surviving infants who are born extremely preterm develop cerebral palsy (CP), and the total rate of neurological impairments is up to 45%. Specialist examination may be used to detect infants in the risk of developing CP, but this resource is only available at some hospitals. The CIMA aims to offer a standardised and affordable computer-based screening solution so that a much larger group of infants can be screened at an early stage, and the ones that fall in the risk zone may receive further specialist examination. Early intervention is critical to improving the motor capacities of the infants. The success of the CIMA methods developed on the MGT framework are to a large part based on the original focus on studying human motion through a holistic, simple and time-based approach.

The unlikely collaboration was featured in a new TV documentary in 2014.

References

  • Valle, S. C., Støen, R., Sæther, R., Jensenius, A. R., & Adde, L. (2015). Test–retest reliability of computer-based video analysis of general movements in healthy term- born infants. Early Human Development, 91(10), 555–558. http://doi.org/10.1016/j.earlhumdev.2015.07.001
  • Jensenius, A. R. (2014). From experimental music technology to clinical tool. In K. Stens\a eth (Ed.), Music, health, technology, and design. Oslo: Norwegian Academy of Music. Retrieved from http://urn.nb.no/URN:NBN:no-46186
  • Adde, L., Helbostad, J., Jensenius, A. R., Langaas, M., & Støen, R. (2013). Identification of fidgety movements and prediction of CP by the use of computer- based video analysis is more accurate when based on two video recordings. Physiotherapy Theory and Practice, 29(6), 469–475. http://doi.org/10.3109/09593985.2012.757404
  • Jensenius, A. R. (2013). Some video abstraction techniques for displaying body movement in analysis and performance. Leonardo, 46(1), 53–60. http://urn.nb.no/URN:NBN:no-38076
  • Adde, L., Langaas, M., Jensenius, A. R., Helbostad, J. L., & Støen, R. (2011). Computer Based Assessment of General Movements in Young Infants using One or Two Video Recordings. Pediatric Research, 70, 295–295. http://doi.org/10.1038/pr.2011.520
  • Adde, L., Helbostad, J. L., Jensenius, A. R., Taraldsen, G., Grunewaldt, K. H., & Støen, R. (2010). Early prediction of cerebral palsy by computer-based video analysis of general movements: a feasibility study. Developmental Medicine & Child Neurology, 52(8), 773–778. http://doi.org/10.1111/j.1469-8749.2010.03629.x
  • Adde, L., Helbostad, J. L., Jensenius, A. R., Taraldsen, G., & Støen, R. (2009). Using computer-based video analysis in the study of fidgety movements. Early Human Development, 85(9), 541–547. http://doi.org/10.1016/j.earlhumdev.2009.05.003
  • Jensenius, A. R. (2007). Action–Sound: Developing Methods and Tools to Study
    Music-Related Body Movement (PhD thesis). University of Oslo.
    http://urn.nb.no/URN:NBN:no-18922