New MOOC: Music Moves

Together with several colleagues, and with great practical and economic support from the University of Oslo, I am happy to announce that we will soon kick off our first free online course (a so-called MOOC) called Music Moves.

Music Moves: Why Does Music Make You Move?

Learn about the psychology of music and movement, and how researchers study music-related movements, with this free online course.

Go to course – starts 1 Feb

About the course

Music is movement. A bold statement, but one that we will explore together in this free online course. Together we will study music through different types of body movement. This includes everything from the sound-producing keyboard actions of a pianist to the energetic dance moves in a club.

You will learn about the theoretical foundations for what we call embodied music cognition and why body movement is crucial for how we experience the emotional moods in music. We will also explore different research methods used at universities and conservatories. These include advanced motion capture systems and sound analysis methods.

You will be guided by a group of music researchers from the University of Oslo, with musical examples from four professional musicians. The course is rich in high-quality text, images, video, audio and interactive elements.

Join us to learn more about terms such as entrainment and musical metaphors, and why it is difficult to sit still when you experience a good groove.

  • FREE online course
  • 3 hours pw
  • Certificates available

Educators

Alexander Refsum Jensenius Alexander Refsum Jensenius

Diana Kayser (Mentor) Diana Kayser (Mentor)

Hans T. Zeiner-Henriksen Hans T. Zeiner-Henriksen

Kristian Nymoen Kristian Nymoen

Requirements

This course is open to everyone. No technical knowledge of music or dance is required.

Get a personalised, digital and printed certificate

You can buy a Statement of Participation for this course — a personalised certificate in both digital and printed formats — to show that you’ve taken part.

Join the conversation on social media

Use the hashtag #FLmusicmoves to join and contribute to social media conversations about this course.

Go to course – starts 1 Feb

New department video

As I have mentioned previously, life has been quite hectic over the last year, becoming Head of Department at the same time as getting my second daughter. So my research activities have slowed down considerably, and also the activity on this blog.

When it comes to blogging, I have focused on building up my Head of Department blog (in Norwegian), which I use to comment on things happening in the Department as well as relevant (university) political issues. My longterm plan, though, is also to write some posts about being Head of Department on this English-language blog.

Today I would like to point to our new department video, targeted at recruiting new students:

The video is made by video journalist Camilla Smaadal, who is also responsible for a set of video presentations of our faculty. Most of these are in Norwegian, but we are planning to add English subtitles through YouTube.

The new video is aiming at giving students an impression of all the cool things happening in our Department. There are a lot of new music education programs popping up everywhere these days, so we realise that we need to be more active in promoting the qualities of our university education. This video is one little step towards this goal.

What does it mean that your system is 7-bit, 10-bit or 16-bit?

In music technology we often talk about n-bit systems. For example, the MIDI protocol is based on a 7-bit scheme, many sensor interfaces use 10-bit resolution for their sensor readings, and sound cards typically record in 16-bit, or even 32-bit. But even though we talk about these things every day, I am often surprised by how many people don’t really know what 7-bit actually means, and that a 32-bit system is not “double” as good as a 16-bit system.

I googled around a little, but couldn’t find a plain and easy table explaining the concept, so here it is, a table showing how many values/combinations you can have in systems with various types of bit-rate:

Bits Exponent Calculation # Values
2-bit 2^2 2×2 = 4
3-bit 2^3 2x2x2 = 8
4-bit 2^4 2x2x2x2 = 16
5-bit 2^5 2x2x2x2x2 = 32
6-bit 2^6 2x2x2x2x2x2 = 64
7-bit 2^7 2x2x2x2x2x2x2 = 128
8-bit 2^8 2x2x2x2x2x2x2x2 = 256
9-bit 2^9 2x2x2x2x2x2x2x2x2 = 512
10-bit 2^10 2x2x2x2x2x2x2x2x2x2 = 1024
11-bit 2^11 2x2x2x2x2x2x2x2x2x2… = 2048
12-bit 2^12 2x2x2x2x2x2x2x2x2x2… = 4096
16-bit 2^16 2x2x2x2x2x2x2x2x2x2… = 65 536
24-bit 2^24 2x2x2x2x2x2x2x2x2x2… = 16 777 216
32-bit 2^32 2x2x2x2x2x2x2x2x2x2… = 4 294 967 296

Are you jumping or bouncing?

walslagOne of the most satisfying things of being a researcher, is to see that ideas, theories, methods, software and other things that you come up with, are useful to others. Today I received the master’s thesis of Per Erik Walslag, titled Are you jumping or bouncing? A case-study of jumping and bouncing in classical ballet using the motiongram computer program, in which he has made excellent use of my motiongram technique and my VideoAnalysis software. This thesis was completed at NTNU last year within the program Nordic Master’s in Dance (NoMAds). That master program is in itself a great example of how a group of fairly small departments can come up with an excellent collaborative study program. I was invited to guest lecture at the program back in 2009, and am very happy to see that my lecture inspired some thoughts and ideas in the students.

New Master Thesis 2: Music Kinection: Musical Sound and Motion in Interactive Systems

evenYet another of my master students have graduated recently, and here is a link to his thesis:

Even has carried out a so-called “practical” master thesis, with a more practical focus. He has carried out a mocap analysis of how people move while playing computer games with a Kinect device, and has also prototyped several mocap instruments.

Abstract:

Sound is often used as a feedback modality in technological devices. Yet relatively little is known about the relation between sound and motion in interactive systems. This thesis exam- ines what happens in the intersection between human-computer interaction, motion and sonic feedback. From the connection of music and motion, coupled by technology, we can draw the expression “Music Kinection”. A theoretical foundation accounts for the relationships that exist between sound and motion, and cognitive foundations for these relationships. This study of literature on music and motion, and music cognition theory, shows that there are many aspects that support various relationships between sound and motion. To see if it is possible to detect similarities between users of an interactive system, a user-study was performed with 16 subjects playing commercially available video games for the Kinect platform. Motion capture data was recorded and analyzed. The user-study showed that there is an overall similarity in the amount of motion performed by the user, but that there is some deviation in amount of motion performed by body parts important to the gameplay. Many users will choose the same body part for one task, but will apply different tactics when using this limb. Knowledge from the theory and observation study was used in the practical explorations of sound-action relationships. Two installations, Kinect Piano and Popsenteret Kinect installation, was made, together with two software prototypes, Soundshape and Music Kinection. The practical study showed that working with full-body motion capture and sound in human-computer interaction is dependent on good motion feature extraction algorithms and good mapping to sound engines.